GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS ### **Description** The LMV321/LMV358/LMV324 are low voltage (2.7V to 5.5V) single, dual and quad operational amplifiers. The LMV321/LMV358/LMV324 are designed to effectively reduce cost and space at low voltage levels. These devices have the capability of rail-to-rail output swing and input common-mode voltage range includes ground. They can also achieve an efficient speed-to-power ratio, utilizing 1 MHz bandwidth and 1 V/µs slew rate at a low supply current. Reducing noise pickup and increasing signal integrity can be achieved by placing the device close to the signal source. The LMV321 is available in 5-Pin SOT353/SOT25 packages that reduce space on PC boards and portable electronic devices. The LMV324 is available in the SOP-14L and TSSOP-14L package. The LMV358 is available in the MSOP-8L and SOP-8L packages. #### **Features** (For V⁺=5V and V⁻=0V typical unless otherwise noted) - Guaranteed 2.7V and 5V performance - · Crossover distortion eliminated - Operating temperature range (-40°C to +85°C) - Gain-bandwidth product 1 MHz - · Low supply current - LMV321 110 μA Typ LMV358 190 μA Typ LMV324 340 μA Typ - Rail-to-rail output swing @ 10 kΩ - V⁺ -10 mV - V +10 mV - Input Common Mode Voltage Range (-0.2 to V⁺⁻0.8V) - · Manufactured in standard CMOS process - SOT353, SOT25, MSOP-8L, SOP-8L, SOP-14L & TSSOP-14L: Available in "Green" Molding Compound (No Br, Sb) - Lead-free Finish/ RoHS Compliant (Note 1) ### **Pin Assignments** SOP-8L / MSOP-8L SOP-14L / TSSOP-14L ### Application - Active filters - General purpose low voltage applications - General purpose portable devices Notes: 1. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied. Please visit our website at http://www.diodes.com/products/lead_free.html ## GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS ### Absolute Maximum Ratings (Note 2) | Symbol | Description | | Rating | Unit | |--------------------------------|---|---------------------|------------|------| | | | LMV321 | 4.0 | | | ESD HBM | Human Body Model ESD Protection | LMV358 | 4.0 | KV | | | | LMV324 | 4.5 | | | | | LMV321 | 350 | | | ESD MM | Machine Model ESD Protection | LMV358 | 350 | V | | | | | 250 | | | | Differential Input Voltage | ntial Input Voltage | | V | | V ⁺ -V ⁻ | Supply Voltage Output Short Circuit to V ⁺ | | 5.5 | V | | | | | (Note 3) | | | | Output Short Circuit to V | | (Note 4) | | | T _{ST} | Storage Temperature | | -65 to 150 | °C | | TJ | Maximum Junction Temperature | | 150 | °C | Notes: ## **Recommended Operating Conditions** | Symbol | Description | Rating | Unit | |--------------------------------|-------------------------------------|------------|------| | V ⁺ -V ⁻ | Supply Voltage | 2.7 to 5.5 | V | | T _A | Operating Ambient Temperature Range | -40 to +85 | °C | Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. ^{3.} Shorting output to V+ will adversely affect reliability. ^{4.} Shorting output to V- will adversely affect reliability. # GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS ## **Electrical Characteristics** #### 2.7V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $T_A = 25$ °C, $V^+ = 2.7$ V, $V^- = 0$ V, $V_{CM} = 1.0$ V, $V_O = V^+/2$ and $R_L > 1$ M Ω . | Symbol | Parameter | Test Conditions | Min
(Note 6) | Typ.
(Note 5) | Max
(Note 6) | Unit | |----------------|---|--|--------------------------------|---------------------|-----------------|--| | Vos | Input Offset Voltage | | | 1.7 | 7 | mV | | TCVos | Input Offset Voltage Average Drift | | | 5 | | μV/°C | | I _B | Input Bias Current | | | 10 | | nA | | Ios | Input Offset Current | | | 5 | 50 | nA | | CMRR | Common Mode Rejection Ratio | $0V \le V_{CM} \le 1.7V$ | 50 | 63 | | dB | | PSRR | Power Supply Rejection Ratio | $2.7V \le V^+ \le 5V$ $V_O = 1V$ | 50 | 60 | | dB | | | Input Common-Mode Voltage | E 0MDD : 50 ID | 0 | -0.2 | | V | | V_{CMR} | Range | For CMRR ≥ 50dB | | 1.9 | 1.7 | | | ., | Output Swing | $R_L = 10 \text{ k}\Omega \text{ to } 1.35 \text{V}$ | V ⁺ - 100 | V ⁺ - 20 | | ., | | Vo | | | | 20 | 100 | mV | | | | LMV321
Single amplifier | | 110 | 140 | μΑ | | Is | Supply Current | LMV358
Both amplifiers | | 190 | 340 | μΑ | | | | LMV324
All four amplifiers | | 340 | 680 | μΑ | | | ectrical Characteristics | 0500 Vt | | \t+'\0 | 4.140 | | | | ise specified, all limits guaranteed for $T_A = \frac{1}{1000}$ | | $\frac{V_{CM} = 1.0V, V_O}{I}$ | | . > 1 MΩ. | | | GBWP | Gain-Bandwidth Product | C _L = 200 pF | | 1 | | MHz | | Фт | Phase Margin | | | 60 | | Deg | | Gm | Gain Margin | | | 10 | | dB | | en | Input-Referred Voltage Noise | f > 50 kHz | | 23 | | $\frac{\text{nV}}{\sqrt{\text{H}_{\text{z}}}}$ | # GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS ### **Electrical Characteristics (Continued)** #### **5V DC Electrical Characteristics** Unless otherwise specified, all limits guaranteed for $T_A = 25^{\circ}C$, $V^{\dagger} = 5V$, $V^{-} = 0V$, $V_{CM} = 2.0V$, $V_{O} = V^{\dagger}/2$ and $R_L > 1$ M Ω . | Symbol | Parameter | Test Conditions | | Min
(Note 6) | Typ.
(Note 5) | Max
(Note 6) | Unit | | | | | |------------------|---------------------------------------|--|--|----------------------------|------------------|----------------------|---------------------|------|----------|--|--| | ., | L | T _A = 25°C | | | 1.7 | 7 | >/ | | | | | | Vos | Input Offset Voltage | T _A = full range | | | | 9 | mV | | | | | | TCVos | Input Offset Voltage Average
Drift | | | | | | 5 | | μV/°C | | | | | Innut Pian Current | T _A = 25°C | | | | | 15 | 250 | nA | | | | I _B | Input Bias Current | $T_A = full rang$ | e | | | | | 500 | | | | | laa | Input Offset Current | $T_A = 25^{\circ}C$ | | | | | 5 | 50 | | | | | I _{OS} | input Onset Current | $T_A = full rang$ | T _A = full range | | | | | 150 | nA | | | | CMRR | Common Mode Rejection Ratio | $0V \le V_{CM} \le 4$ | .0V | | | 50 | 65 | | dB | | | | PSRR | Power Supply Rejection Ratio | $2.7V \le V^{+} \le 5$
$V_{O} = 1V, V_{CM}$ | | | | 50 | 60 | | dB | | | | | Input Common-Mode Voltage | E OMDD > | 50-ID | | | 0 | -0.2 | | | | | | V _{CMR} | Range | For CMRR ≥ | 500B | | | | 4.2 | 4.0 | V | | | | Λ | Large Cianal Voltage Coin | $R_L = 2 k\Omega$ | $R_L = 2 \text{ k}\Omega$ $T_A = 25^{\circ}\text{C}$ | | | 15 | 100 | | \//\/ | | | | A _V | Large Signal Voltage Gain | (Note 7) | T _A = | full range | | 10 | | | V/mV | | | | | | $R_L = 2 kΩ$ to 2.5V | High | $T_A = 25^{\circ}C$ |) | V ⁺ - 300 | V ⁺ - 50 | | mV | | | | | | | | $T_A = \text{full } r$ | ange | V ⁺ - 400 | | | | | | | | | | | $T_A = 25^{\circ}C$ | ; | | 50 | 300 | | | | | Vo | Output Swing | | level | $T_A = \text{full } r$ | ange | | | 400 | | | | | v _o | Output Swing | | High | $T_A = 25^{\circ}C$ | ; | V ⁺ - 100 | V ⁺ - 10 | | | | | | | | $R_L = 10 \text{ k}\Omega$ | level | $T_A = \text{full } r$ | ange | V ⁺ - 200 | | | | | | | | | to 2.5V | Low | $T_A = 25^{\circ}C$ |) | | 10 | 180 | | | | | | | | level | $T_A = \text{full } r$ | ange | | | 280 | <u> </u> | | | | lo | Output Short Circuit Current | Sourcing, Vo | = 0V | | | 5 | 60 | | mA | | | | 10 | Output Short Circuit Current | Sinking, V _O = | = 5V | | | 10 | 90 | | IIIA | | | | | | LMV321 Sing | 1 Single amplifier | | | 110 | 140 | | | | | | | Supply Current | LMV358 Botl | n | $T_A = 25^{\circ}C$ | | | 190 | 340 | | | | | Is | | amplifiers | | T _A = full rang | ge | | | 600 | μΑ | | | | | | LMV324 All f | our | $T_A = 25^{\circ}C$ | | | 340 | 680 | | | | | | | amplifiers $T_A = \text{full range}$ | | | | 1100 | | | | | | | | | SOT353 (Note 8) | | | 330 | | | | | | | | | | SOT25 (Note 8 | | SOT25 (Note 8) | | | | | 250 | | | | θ_{JA} | Thermal Resistance Junction- | TSSOP-14L (Note 8) | | | | 100 | | °C/W | | | | | OJA | to-Ambient | MSOP-8L (N | MSOP-8L (Note 8) | | | | 203 | | | | | | | | SOP-8L (Note 8) | | | | 150 | | | | | | | | | SOP-14L (No | ote 8) | | | | 83 | | | | | # GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS ### **Electrical Characteristics (Continued)** | 5V AC | 5V AC Electrical Characteristics | | | | | | | | | |---|----------------------------------|-------------------------|--|----|--|--|--|--|--| | Unless otherwise specified, all limits guaranteed for $T_A = 25^{\circ}C$, $V^{+} = 5V$, $V^{-} = 0V$, $V_{CM} = 2.0V$, $VO = V^{+}/2$ and $R_L > 1$ M Ω . Boldface limits apply at the temperature extremes. | | | | | | | | | | | SR | Slew Rate | (Note 9) | | 1 | | V/µs | | | | | GBWP | Gain-Bandwidth Product | C _L = 200 pF | | 1 | | MHz | | | | | Φ_{m} | Phase Margin | | | 60 | | Deg | | | | | G _m | Gain Margin | | | 10 | | dB | | | | | en | Input-Referred Voltage Noise | f > 50 kHz | | 23 | | $\frac{\text{nV}}{\sqrt{\text{H}_{\text{z}}}}$ | | | | #### Notes: - 5. Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material. - 6. All limits are guaranteed by testing or statistical analysis. - 7. R_L is connected to V-. The output voltage is $0.5V \le V_O \le 4.5V$. - 8. All numbers are typical, and apply for packages soldered directly onto a PC board in still air. - 9. Connected as voltage follower with 3V step input. Number specified is the slower of the positive and negative slew rates. # GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS ## **Typical Performance Characteristics** Unless otherwise specified, Vs=+5V, single supply, TA=25°C ### Supply Current vs. Supply Voltage ### **Output Voltage Swing vs. Supply Voltage** ### **PSRR vs. Frequency** ### CMRR vs. Frequency ### **CMRR vs. Input Common Mode Voltage** ### Δ Vos vs. CMR # GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS ## Typical Performance Characteristics (Continued) ### Sourcing Current vs. Output Voltage (2.7V) ## Sourcing Current vs. Output Voltage (5V) ### Sinking Current vs. Output Voltage (2.7V) ### Sinking Current vs. Output Voltage (5V) #### Input Voltage vs. Output Voltage #### Output voltage vs. input voltage # GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS ## **Typical Performance Characteristics (Continued)** ### Frequency Response vs. Resistive Load (2.7V) ### Frequency Response vs. Resistive Load (5V) ### Frequency Response vs. Capacitive Load (2.7V) #### Frequency Response vs. Capacitive Load (5V) # GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS # Typical Performance Characteristics (Continued) #### **Inverting Large Signal Pulse Response** ### **Inverting Large Signal Pulse Response** ### **Inverting Large Signal Pulse Response** ### **Inverting Small Signal Pulse Response** ### **Inverting Small Signal Pulse Response** ### **Inverting Small Signal Pulse Response** # GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS ## **Typical Performance Characteristics (Continued)** ### Stability vs. Capacitive Load ### Slew Rate vs. Supply Voltage ### Input Voltage Noise ### **GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS** ### **Ordering Information** 58: Dual (Note 12) B: SOP 14L TS: TSSOP-14L S:SOP8L M8: MSOP-8L | | Davisa | Dookses Code | Packaging | 7"/13" Ta | ape and Reel | |-------------|--------------|--------------|-----------|------------------|--------------------| | | Device | Package Code | (Note 13) | Quantity | Part Number Suffix | | Pb | LMV321WG-7 | W | SOT25 | 3000/Tape & Reel | -7 | | Pb, | LMV321SEG-7 | SE | SOT353 | 3000/Tape & Reel | -7 | | P | LMV324BG-13 | В | SOP-14L | 2500/Tape & Reel | -13 | | Pb, | LMV324TSG-13 | TS | TSSOP-14L | 2500/Tape & Reel | -13 | | Pb, | LMV358SG-13 | S | SOP-8L | 2500/Tape & Reel | -13 | | PD , | LMV358M8G-13 | M8 | MSOP-8L | 2500/Tape & Reel | -13 | Notes: - 10. LMV321 is only available for SOT25 and SOT353. - 11. LMV324 is only available for SOP-14L and TSSOP-14L. - 12. LMV358 is only available for SOP-8L and MSOP-8L. - 13. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf. ## **Marking Information** #### **SOT25 / SOT353** ## (Top View) XXYWX XX: Identification Code Y : Year : 0~9 <u>W</u>: Week: A~Z: 1~26 week; a~z: 27~52 week; z represents 52 and 53 week X: A~Z': Green 3 2 | Device | Package type | Identification Code | |----------|--------------|---------------------| | LMV321W | SOT25 | BX | | LMV321SE | SOT353 | BY | ### GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS ## **Marking Information (Continued)** ### SOP-14L / TSSOP-14L ### SOP-8L #### MSOP-8L # GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS ## **Package Information** Package Type: SOT25 Package Type: SOT353 # GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS ## Package Information (Continued) Package Type: SOP-14L Package Type: TSSOP-14L # GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS ## **Package Information (Continued)** Package Type: SOP-8L Package Type: MSOP-8L ### GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS #### **IMPORTANT NOTICE** DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages. Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks. #### **LIFE SUPPORT** Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein: - A. Life support devices or systems are devices or systems which: - 1. are intended to implant into the body, or - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user. - B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness. Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems. Copyright © 2011, Diodes Incorporated www.diodes.com