
EE847 - DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING, ROCHESTER INSTITUTE OF TECHNOLOGY, AUGUST 2013 1

Comparison of Optimization Algorithms for Boost
Converter Controller Design

Kevin C. Fronczak

Abstract—Switched DC-DC Boost Converter controllers can
take on many topologies and the design depends on the per-
formance of the power conversion stage itself. To aid in the
design process, the use of Genetic Algorithms and Particle Swarm
Optimization algorithms is explored here. Each algorithm is
implemented and the performance compared in order to provide
a thorough analysis of what optimization algorithms explore the
controller design solution space more efficiently. The algorithms
are operated on a Voltage-Mode-Controlled Boost Converter
operating in both CCM and DCM. The Genetic Algorithm utilizes
a technique known as the ‘Queen-Bee’ method while the two
Particle Swarm Optimization algorithms compared utilizes a
constriction factor and a chaotic inertial weight. The Genetic
Algorithm was able to produce a solution within 0.2% of the
ideal solution while the best PSO implementation only came
within 74% with the same operating conditions.

I. INTRODUCTION

SWITCHED DC-DC converters have many frequency re-
sponse characteristics that must be optimized in order to

produce the best product and eliminate stability concerns. The
design of the controller is critical as it determines the steady-
state accuracy, response time, and stability margins (both gain
and phase). Unfortunately, amplifier design is not trivial as
improving one performance metric will, typically, decrease
another. For example, in order to increase the phase margin
of a system, one must typically lower the gain in order to
compensate. While this would improve stability, it would also
decrease steady-state accuracy.

Due to this complexity, switched converter controller design
is well suited to solving via optimization algorithms. Electron-
ics design via optimization algorithms is a well-established
field of research and shows the possibility of providing optimal
solutions for high-complexity design [17], [18], [23], [25],
[30]–[35].

There are two main areas in which an optimization algo-
rithm could be useful within the structure of a Switched DC-
DC Boost Converter such as the power conversion stage [18],
[25] and the controller stage [33]. Here, the controller stage
is of more interest due to its direct impact on the frequency
response of the system. The design of the controller is one of
the most important tasks as it is used to eliminate steady-state
error at the output of the converter and is used to guarantee
that the converter is stable under all operating conditions.

The optimization algorithms compared here are that of
Genetic Algorithms (GAs) and Particle Swarm Optimiza-
tion (PSO). For the Genetic Algorithm implementation, the
‘Queen-Bee’ method is used wherein the algorithm is modeled
off of the interaction of bees within a hive (abbreviated as
QBGA) [22], [32], [35]. For the Particle Swarm Optimization
implementation, three algorithms are compared: Constriction

(PSOC), Chaotic Descending Inertia Weight (CDIW), and
Chaotic Random Intertia Weight (CRIW) [20], [26], [27], [29].

Both QBGA and all three PSO algorithms attempted to
optimize the transfer function of a controller by iterating over
the parameters of the controller transfer function for the Boost
Converter in both CCM and DCM. Various fitness function
implementations were compared including a Normalized Lin-
ear Function (NLF), Normalized Parabolic Function (NPF),
and both NLF and NPF with a penalty function used to aid
in convergence [15], [16]. Preliminary work was performed
previously in [4].

II. BOOST CONVERTER CONTROL

The block diagram for a typical boost converter is shown in
Fig. 1 while a circuit implementation utilizing Voltage-Mode-
Control (VMC) is shown in Fig. 2. There are two modes
of operation for a boost converter, known as Continuous-
Conduction Mode (CCM) and Discontinuous Conduction
Mode (DCM). Each mode is characterized by observing the
current through the inductor over one switching cycle. If the
current goes to zero before one switching cycle ends, the
converter is said to be operating in DCM. On the other-hand,
if the current does not drop to zero withing one switching
cycle it is said to be operating in CCM. Distinguishing the
two is important as each mode has implications on the small-

Fig. 1: Boost Converter Block Diagram

Fig. 2: Voltage-Mode-Controlled Boost Converter Circuit Ar-
chitecture



EE847 - DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING, ROCHESTER INSTITUTE OF TECHNOLOGY, AUGUST 2013 2

Fig. 3: Lag Compensator Circuit

Fig. 4: Bode Plot for Lag Compensator Circuit with RO =
6 kΩ, CZ = 100nF , gm = −1S, RT = 2MΩ, RB = 500 kΩ
and RZ swept with values of 100 Ω, 500 Ω, and 3 kΩ.

signal performance of the circuit as a whole: the VMC-
CCM Converter exhibits LC resonance while the VMC-DCM
Converter does not [1]–[6]. This makes controller designs
much easier to implement for VMC-DCM Converters rather
than VMC-CCM Converters.

There are many different error amplifier architectures that
can be used for the controller [5], [7], [8], but only three
are explained here: the Lag, Lag-Plus-Pole, and PID. Each
controller explored is implemented with an OTA due to their
more ideal characteristics at an integrated circuit level [8]–
[12].

Note that for all subsequent controller transfer function
equations in this section,

K = gmRO
RB

RT +RB
(1)

A. Lag Controller

The Lag Compensator is given in Figure 3 and has a transfer
function given by (2). The feature of this type of compensator
is that it provides a phase “lag” at a given peak frequency.
Note that for (2) to be true, RO � RZ .

Vc
Vo

= K

[
sRZCZ + 1

sROCZ + 1

]
(2)

fp =
1

2πROCZ
(3)

fz =
1

2πRZCZ
(4)

The benefit of using a lag compensator, also known as
a proportional-integral (PI) controller, is that it can be used

Fig. 5: Lag Compensator Circuit Plus Pole

Fig. 6: Bode Plot for Lag Compensator Circuit Plus Pole with
RO = 6 kΩ, CZ = 100nF , CC = 1nF , gm = −1S, RT =
2MΩ, RB = 500 kΩ and RZ swept with values of 100 Ω,
500 Ω, and 1 kΩ.

to boost the gain of a system without affecting the behavior
near the 0 dB crossing point. As such, it’s ideal for converters
that already have a good phase margin, but just need the DC
gain boost in order to eliminate steady-state error (such as the
VMC-DCM Converter).

B. Lag Controller Plus Pole

By adding a capacitor, CC , in parallel with the series RC
string, a high-frequency pole can be added to the system, as
shown in Figure 6. In terms of equations, this circuit can be
shown to have a transfer function equivalent to (5) where
RO � RZ and CZ � CC . Note that the only difference
between this compensator and the one shown previously in
Figure 4 is the addition of a high frequency pole.

Vc
Vo

= K
sRZCZ + 1

s2RORZCCCZ + sROCZ + 1
(5)

C. PID Controller

The PID (Proportional-Integral-Derivative) controller, as
shown in Figure 7, is useful as it provides both phase lag and
lead in order to maximize phase and gain compensation. This
makes it ideal for VMC-CCM Boost Converters as it provides
a large DC-gain as well as the ability to boost the phase such
that the phase-margin is of an acceptable value. The transfer
function for this controller can be found below in (6). Again,
it is assumed that RO � RZ .

Vc
Vo

=
K

sRO(CZ + CC)

(sRTC1 + 1)(sRZCZ + 1)

(sRZCZCC

CZ+CC
+ 1)(s(RT ‖RB)C1 + 1)

(6)



EE847 - DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING, ROCHESTER INSTITUTE OF TECHNOLOGY, AUGUST 2013 3

Fig. 7: Lag-Lead Compensator Circuit

Fig. 8: Bode Plot for Lag-Lead Compensator Circuit with
C1 = 0.8 pF , CC = 2nF , gm = −10µS, RB = 500 kΩ,
RT = 2MΩ, CZ = 300nF , and RZ swept with values of
100 Ω, 500 Ω, and 1 kΩ.

III. OPTIMIZATION ALGORITHMS

The idea behind using optimization algorithms to solve the
controller design problem is to remove some of the burden
off of a circuit designer. These algorithms are, typically, much
better at exploring the design solution space than a designer
would be and, as such, can convergence on an acceptable
solution more quickly. Even if the design is not an optimal
design, it provides a circuit designer with a good starting point
and still serves to minimize the required time spent on a circuit
block.

A. Queen-Bee GA

There are many different GA implementations, but the one
analyzed here is known as the ‘Queen-Bee’ method [22], [32].
Fig. 9 shows the flow of a Queen-Bee-type GA (abbreviated
as QBGA).

The QBGA is an algorithm based around the interactions
of bees in a hive. Essentially, there exists a single queen with
which all other bees, known as drones, mate. Occasionally
a female bee is produced that ousts the current queen and
becomes the new queen.

To implement this in software, drones are created with
completely randomized genes and the algorithm proceeds as
follows:

1) Initialization: Drones compete and best is selected as
nest queen.

2) Drones mate with queen, produce two offspring (gene
crossover example in Fig. 10).

3) Offspring, known as virgin queens, compete and best
survives.

Create Drones

Determine Initial 
Queen Bee

Mate Each Drone 
with Queen Bee

Extract Best Child as 
Virgin Queen

Extract best Virgin 
Queen

Compete Virgin 
Queen Against Nest 

Queen

Extract Best Queen 
as Nest Queen

End

Terminate?

Determine 
Crossover Genes

Mutate 
Gene?

Create Two Bees

Yes

No

Fig. 9: Block Diagram for a Queen-Bee Genetic Algorithm
for Optimization of Switched-Converter Controller Transfer
Function.

Fig. 10: Gene Crossover Diagram for QBGA.

4) Every virgin queen competes and best competes with
current queen; whichever survives becomes new nest
queen.

5) Randomize drones, repeat.
During gene crossover, however, it is not sufficient to only

crossover the genes as there must be some probability of
gene mutation in order to guarantee variability in the gene
pool to avoid converging on local optima. To do so, most
algorithms implement a constant that determines the gene
mutation probability [22], [23], [32].

In an attempt to speed up convergence, a variable mutation
probability was used in this implementation based on the
age of the nest queen as an alternative to simply choosing
a constant. As the nest queen moves from generation to
generation, it is likely that the QBGA has either converged
on the best solution or it could be stuck on a local optima. By
setting the mutation probability as a variable based on how
many generations the nest queen has existed for, more and
more variability will be introduced into the gene pool. The goal
here is to attempt to push the algorithm out of any potential
locally optimal points. If the program has, in fact, found a



EE847 - DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING, ROCHESTER INSTITUTE OF TECHNOLOGY, AUGUST 2013 4

Fig. 11: Comparison of QBGA Convergence with a Varied and
Constant Rate of Mutation for a nest size of 30 and over 20
iterations.

global optimum, then an increased mutation rate should have
no effect on the solution. The pseudo-code for such a mutation
algorithm is described below:

Algorithm 1: Variable QBGA Mutation Based on Queen
Age

for gene in crossover do
if rand() ≥ C*queenAge then

gene = mutate(gene);
end
crossover[i] = gene;

end

By setting C to some fractional value, it will eventually
converge to have a 100% mutation rate when 1

C = queenAge.
However, this value must not be set too high as otherwise the
GA will mutate too quickly and have difficulty converging on
a solution. Setting C to be between 0.05 and 0.1 yielded the
best results.

A comparison of convergence rates for the QBGA with
and without the variable mutation rate is shown in Figure
11. Here it takes eleven generations for the varied mutation
rate implementation to converge while it takes twenty-five
generations for the constant rate of mutation implementation
to converge to the same fitness value. This indicates that the
variable rate of mutation does, indeed, aid in convergence
speed as expected.

B. Particle Swarm Optimization

Another type of optimization algorithm that is useful for
high-complexity circuit design is PSO. Using PSO as a circuit
design optimization tool has been explored previously in [33],
[34].

This method is different from that of GAs in that there are
a set number of particles that have an associated position and
velocity in N -dimensional space. Each particle’s position is
evaluated and each keeps track of its own best position. All of
the best positions for each particle are then evaluated and the
best global position is stored. Each particle has knowledge of
its current position, current velocity, best local position, and

Fig. 12: Comparison of w for CDIW and CRIW over 500
iterations with w1 = 0.9 and w2 = 0.4.

best swarm global position. As the swarm begins to move, the
velocity of the particles change based on those parameters in
order to converge on a solution.

1) Chaotic Inertial Weight: The idea of adding some ran-
dom behavior to the inertial weight of a particle’s velocity has
been explored extensively [27]–[29]. The typical equation for
particle velocity with inertial weight is shown below in (7)
where βp is the best local particle position, Xp is the current
particle position, and G is the global best position. The value
for w is typically set to be less than one and C1 + C2 ≥ 4.
The inertial weight factor is typically decreased with each
iteration [21], and is used to force a particle to stop excessive
exploration of the solution space.

Vp = w · Vp+C1[U(0, 1) · (βp −Xp)]+

C2[U(0, 1) · (G−Xp)] (7)

By adding a randomness to the value for w, it’s possible to
speed up the convergence of the PSO algorithm. This can be
done with either Chaotic Descending Inertial Weight (CDIW)
or Chaotic Random Inertial Weight (CRIW) [27]. In CDIW,
w is calculated by first randomly choosing a value within
the interval of (0, 1), called z. This value is then logistically
mapped by the equation in (8). Next, w is calculated with
this logistically mapped variable as per (9). Here, imax is
the maximum number of PSO iterations and i is the current
iteration. The variables w1 and w2 are set as the desired
starting and ending inertial weights (typically 0.9 and 0.4, as
mentioned earlier).

z = 4 · z · (1− z) (8)

w =
(w1 − w2)(imax − i)

imax
+ z · w2 (9)

An alternative Chaotic Inertial Weight implementation is
called Chaotic Random Inertial Weight (CRIW). This differs
from CDIW in that the value for w is random every iteration
as opposed to decreasing, as Fig. 12 shows. The equation for
determining w in CRIW is shown in (10).

w =
1

2
[U(0, 1) + z] (10)



EE847 - DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING, ROCHESTER INSTITUTE OF TECHNOLOGY, AUGUST 2013 5

2) Constriction: Maurice Clerc et al. introduced a new way
to modify a particle’s velocity in order to speed convergence
to a solution in [19], [20] and was later explored more in
depth in [26]. This is done by use of constriction factor, χ,
and weighted velocity constants, C1 and C2. This constriction
factor serves to limit the swarm to a smaller search area as it
converges on an optimal solution. The velocity coefficients of
C1 and C2 are used to provide more emphasis on a particle’s
local best solution or the global best solution, respectively. The
velocity update equation can be seen in (11) where βp is the
best local particle position, Xp is the current particle position,
and G is the global best position. Equation (12) shows the
equation to determine the new particle position. Equation (14)
shows the equation used to calculate the constriction factor,
χ.

Vp = χ(Vp+C1[U(0, 1) · (βp −Xp)]+

C2[U(0, 1) · (G−Xp)]) (11)

Xp = Xp + Vp (12)
φ = C1 + C2 (13)

χ =
2

2− φ−
√
φ2 − 4φ

(14)

C. Fitness Function

The biggest design challenge with optimization problems is
that of the fitness function [13]–[15], [24]. Care must be taken
to add in as many variables as possible in order to eliminate
the possibility of unwanted states (for example, a 90◦ Phase
Margin but 10 dB Gain). However, when more variables are
added they will typically need to be weighted in order to
emphasize the more important parameters of the circuit.

A way to aid in the convergence of GAs is to add a penalty
to the fitness function [15], [16]. The idea is to decrease
the value of the fitness function based on the region that
the variable is in. Thus, a penalty function could produce a
value for anything below a given acceptable range to cause the
fitness value to decrease more rapidly the further it is away
from the ideal value.

A generalized fitness function equation with penalties is
shown below in (15) where α is a weighted constant for
variable θ and P (θ) is a function that determines the penalty
associated with the solution presented by θ.

F =

N∑
i=1

αiθi − P (θi) (15)

For the algorithm implementations explored here, the fol-
lowing variables were selected for the fitness function:

• Phase Margin, φM
• Gain Margin, GM
• DC Gain, A0

Since each of these variables have varying sizes, it is wise to
normalize them to some ideal value such that the sum of all the
ideal, normalized values is equal to the number of parameters.
This makes it significantly easier to determine the necessary
values for α that help to speed convergence.

Fig. 13: Comparison of Convergence Speeds for a) QBGA
with NPF and b) QBGA with NLF. Drones = 30, Mutation
Rate = 0.1 · queenAge, αφM

= 3, αGM
= 0.6, αA0

= 2.

TABLE I: Comparison of Optimization Algorithms for Size
of 10 and Max Iteration of 100.

Algorithm Error From Expected
QBGA (Static) 0.268%

QBGA (Variable) 0.179%
PSO-CDIW 133.286%
PSO-CRIW 133.036%

PSO-Constrict 73.750%

In addition to normalizing all of the variables, each value
was placed into a function that transforms the linear data into
parabolic data such that it has a maximum at the ideal point.
For example, if the ideal φM is chosen as 70◦, NφM

= φM

70
and thus f(θ(φM )) = −(NφM

− 1)2 + 1. The constant scalar
is there so that the maximum value occurs at a value of 1
instead of 0.

Experimental results show that the normalized parabolic
fitness function, NPF, exhibits faster global optimum conver-
gence than using only the normalized data alone as shown in
Figure 13. Note that the fitness value in the linear case is, in
fact, larger than the NPF case. This, however, is expected as
values greater than the the normalized ideal parameter will
subtract from the fitness value in the NPF while it adds in the
linear case. As such, comparing the fitness values directly does
not result in a good comparison of fitness function strength.
The only valid comparison is to compare the number of
generations it takes to converge. Equation (16) shows the full
NPF used for this implementation.

F =

N∑
i=1

−αi(N(θi)− 1)2 + αi − P (θi) (16)

IV. ALGORITHM COMPARISONS

The algorithms compared are QBGA with static mutation,
QBGA with variable mutation, PSO-CDIW, PSO-CRIW, and
PSOC (all with NPF). Table I shows a comparison of the
error from the optimal fitness value after 100 iterations. Fig.
14 shows this convergence graphically (omitting the static
mutation QBGA since this was compared earlier).

It’s clear that the QBGA implementation is much better
than any of the PSO algorithms tested for boost converter
controller optimization. Both inertial weight algorithms had
difficulty escaping from their local optima. The PSOC had a
similar problem but was able to converge on a better solution
than either inertial weight algorithms. The better performance
of the PSOC is expected based on previous results [26].



EE847 - DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING, ROCHESTER INSTITUTE OF TECHNOLOGY, AUGUST 2013 6

Fig. 14: Comparison of Convergence Speeds for QBGA and
PSO with size of 10 and max iteration of 100.

A. Simulation with Generated Controller

In order to properly compare the solutions generated by the
algorithms, the controller solutions were placed into MAT-
LAB’s Simulink toolbox using Powerlib.

In order to test the solution of each algorithm, the final
transfer function was placed into the circuit and then the circuit
was simulated over a time of 20ms. At 10ms the load was
stepped to 25% its original value. For the DCM Converter, the
extracted transfer function from the QBGA algorithm is shown
in (17) while the transfer function from the Constricted PSO
algorithm is shown in (18). The QBGA algorithm produces
an expected solution equivalent to a Lag Controller, whose
general transfer function was shown previously in (2). The
PSO algorithm converged on a solution similar to the PID
transfer function in (6) which, for a DCM Converter, is valid
but unnecessary.

TQBGA(s) =
0.0034s+ 159.8

0.0026s+ 1
(17)

TPSO(s) =
147s2 + 288.9s+ 3.016

0.196s3 + 0.0066s2 + 0.000021s+ 0.00002
(18)

Fig. 15 shows a comparison of the controller solutions
after simulation. As can be seen, the QBGA solution is faster
(note the time-scale difference) and is stable, albeit slightly
underdamped. The odd peak in the step response for the
QBGA solution is due to the converter exiting the small-signal
region and briefly incurring large-signal (non-linear) behavior.
The PSO solution is also stable, but slower than the QBGA
solution. While it is a perfectly adequate controller solution,
the QBGA clearly performs better.

Next, the algorithms were run on a Boost Converter oper-
ating in CCM. The generated controller solutions are shown
below for the QBGA and PSO algorithms in (19) and (20),
respectively. Both algorithms converge on a PID-like transfer
function which is absolutely neccessary for a Voltage-Mode-
Controlled CCM Boost Converter.

TQBGA(s) =
348.6s+ 348.6

0.00017s3 + s2 + 3.5× 10−7s+ 1
(19)

TPSO(s) =
4.2× 104s+ 2.02× 104

0.06s3 + 48.53s2 + 0.27s
(20)

Fig. 15: Simulation Comparison of Optimization Algorithm
Controller Solution for DCM Boost Converter.

Fig. 16: Simulation Comparison of Optimization Algorithm
Controller Solution for DCM Boost Converter.

The comparison of the simulations for each solution are
shown in Fig. 16. The step-response is nearly identical for
both, indicating that the small-signal model for the whole
system is also quite similar. However, observing the start-up
of the system shows that the large-signal response is more
variable. The QBGA gracefully rises to a steady-state value
while the Constricted PSO has slight oscillation before settling
to a steady-state value. That said, the QBGA solution is only
marginally better than the PSO here. This is because the
CCM Boost Converter provides fewer acceptable solutions
than the DCM case which makes it much more difficult for an
optimization algorithm to converge on an acceptable solution
(both Fitness values were around 1, as opposed to the ideal
value of 5.6).

V. CONCLUSION

It has been shown that for optimizing the controllers in
VMC Boost Converter, a Queen-Bee GA achieves better
results in less time than that of three different PSO algorithms.
All algorithms performed much better when optimizing Boost
Converters in DCM as opposed to CCM. This is expected due
to the similarity in solution space size for both modes, yet a
smaller acceptable solution region in the CCM case. The large
phase shift due to the LC resonance in the CCM converter
causes the optimization algorithms explored here to get stuck
in regions of acceptable, but non-ideal, solutions and they have
difficulty escaping.



EE847 - DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING, ROCHESTER INSTITUTE OF TECHNOLOGY, AUGUST 2013 7

The run-time of each algorithm was found to be rather
intensive, taking nearly ten minutes to complete 200 iterations
at a swarm/nest size of 20. Due to the large solution space,
it’s imperative to allow the algorithm to run for as long as
possible in order to guarantee convergence to an optimal
solution. However, it seems to be far more beneficial to run the
algorithms for a short amount of time in order to converge near
an optimal solution and use the values generated as a starting
point in the design of the controller. This allows a circuit
designer to start from a point of known operation rather than
requiring tedious calculations to be performed and iterated on
to find an acceptable solution.

In terms of Power Electronics Circuit optimization, it’s clear
that Queen-Bee Genetic Algorithms hold significant promise
as a design-tool that can be used as an aid when designing
various circuit blocks.

REFERENCES

[1] Vatché Vorpérian, “Simplified Analysis of PWM Converters Using
Model of PWM Switch Part I and Part II,” in IEEE Trans. Aerosp.
Electron. Syst., vol. 26, no. 3, pp. 490-505, May 1990.

[2] R.D. Middlebrook, and Slobodan Ćuk, “A General Unified Approach
to Modeling Switching-Converter Power Stages,” in Proceedings of the
IEEE Power Electron. Special. Conf., pp. 18-34, 1976.

[3] R.D. Middlebrook, “Small-Signal Modeling of Pulse-Width Modulated
Switched-Mode Power Converters,” in Proceedings of the IEEE, vol. 76,
no. 4, pp. 343-354, April 1988.

[4] Kevin C. Fronczak, “Stability Analysis of Switched DC-DC Boost
Converters for Integrated Circuits,” Master’s Thesis, Department of
Electrical and Microelectronic Engineering, Rochester Inst. of Tech.,
Rochester, NY, August 2013.

[5] Christophe P. Basso, Switched-Mode Power Supplies, 1st ed. New York,
NY: McGraw-Hill, 2008.

[6] Alberto Reatti, and M.K. Kazimierczuk, “Current-Controlled Current
Source Model for a PWM DC-DC Boost Converter Operated in Dis-
continuous Conduction Mode,” in IEEE Internat. Symp. Circuits Syst.,
Geneva, Switzerland, May 28-31, 2000, pp. III/239-III/242.

[7] Robert W. Erickson, and Dragan Maksimović, Fundamentals of Power
Electronics, 2nd ed. Secaucus, NJ: Academic, 2000.

[8] Jeongjin Roh, “High-Performance Error Amplifier for Fast Transient
DC-DC Converters,” in IEEE Trans. Circuits Syst. II: Exp. Briefs, vol.
52, no. 9, pp. 591-595, September 2005.

[9] Cheung Fai Lee and Philip K.T. Mok, “A Monolithic Current-Mode
CMOS DC-DC Converter With On-Chip Current-Sensing Technique,”
in IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, January 2004.

[10] Hong Yao, “Modeling and Design of a Current Mode Control Boost
Converter,” M.S. Thesis, Department of Electrical and Computer Engi-
neering, Colorado State University, Fort Collins, CO, 2012.

[11] Hong-Wei Huang, Hsin-Hsin Ho, Chia-Jung Chang, Ke-Horng Chen,
and Sy-Yen Kuo, “On-Chip Compensated Error Amplifier for Fast
Transient DC-DC Converters,” in IEEE Internat. Conf. Electro/inform.
Tech., East Lansing, MI, pp. 103-108. May 7-10, 2006.

[12] Chan-Soo Lee, Young-Jin Oh, Kee-Yeol Na, Yeong-Seuk Kim, Nam-
Soo Kim “Integrated BiCMOS Control Circuits for High-Performance
DC-DC Boost Converter,” in IEEE Trans. Power Electron., vol. 28, no.
5, pp. 2596-2603, May 2013.

[13] Günter Rudolph, “Convergence Analysis of Canonical Genetic Algo-
rithms,” in IEEE Trans. Neural Networks, vol. 5, no. 1, pp. 96-101,
January 1994.

[14] Jeffrey A. Joines, Christopher R. Houck, “On the Use of Non-Stationary
Penalty Functions to Solve Nonlinear Constrained Optimization Prob-
lems with GA’s,” in Proceedings of the First IEEE Conf. on Evol.
Comput. vol. 2, pp. 579-584, June 1994.

[15] Mitsuo Gen, Runwei Cheng, “A Survey of Penalty Techniques in Genetic
Algorithms,” in Proceedings of IEEE Internat. Conf. Evol. Comput., pp.
804-809, May 1996.

[16] Vassilios Petridis, Spyros Kazarlis, Anastasios Bakirtzis, “Varying Fit-
ness Functions in Genetic Algorithm Constrained Optimization: The
Cutting Stock and Unit Commitment Problems,” in IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 28, no. 5, pp. 629-640, October 1998.

[17] Adrian Thompson, Paul Layzell, Ricardo Salem Zebulum, “Explorations
in Design Space: Unconventional Electronics Design Through Artificial
Evolution,” in IEEE Trans. Evol. Comput., vol. 3, no. 3, pp. 167-196,
September 1999.

[18] Jun Zhang, Henry Shu-Hung Chung, Wai-Lun Lo, S.Y. Hui, Angus
Kwok-Ming Wu, “Implementation of a Decoupled Optimization Tech-
nique for Design of Switching Regulators Using Genetic Algorithms,”
in IEEE Trans. Power Electron., vol. 16, no. 6, pp. 752-763, November
2001.

[19] Maurice Clerc, “The Swarm and the Queen: Towards a Deterministic
and Adaptive Particle Swarm Optimization,” in Proceedings of the 1999
Congress Evol. Comput., vol. 3, pp. 1951-1957, July 1999.

[20] Maurice Clerc, James Kennedy, “The Particle Swarm - Explosion,
Stability, and Convergence in a Multidimensional Complex Space,” in
IEEE Trans. Evol. Comput., vol. 6, no. 1 pp. 58-73, February 2002.

[21] R.C. Eberhart, Y. Shi, “Comparing Inertia Weights and Constriction
Factors in Particle Swarm Optimization,” in Proceedings of the 2000
Congress Evol. Comput., vol. 1, pp. 84-88, July 2000.

[22] Sung Hoon Jung, “Queen-bee Evolution for Genetic Algorithms,” in
Electron Letters vol. 39, no. 6, pp. 575-576, March 2003.

[23] Kazuhiro Takemura, Tetsushi Koide, Hans Jürgen Mattausch, Toshio
Tsuji, “Analog-Circuit-Component Optimization with Genetic Algo-
rithm,” in IEEE Internat. Midwest Symp. Circuits Syst., vol. 1, pp. 489-
492, July 2004.

[24] Shinn-Ying Ho, Li-Sun Shu, Jian-Hung Chen, “Intelligent Evolutionary
Algorithms for Large Parameter Optimization Problems,” in IEEE Trans.
Evol. Comput., vol. 8, no. 6, pp. 522-541, December 2004.

[25] Jun Zhang, Henry S.H. Chung, W.L. Lo, “Pseudocoevolutionary Genetic
Algorithms for Power Electronics Circuits Optimization,” in IEEE Trans.
Syst., Man, Cybern., vol. 36, no. 4, pp. 590-598, July 2006.

[26] Daniel Bratton, James Kennedy, “Defining a Standard for Particle Swarm
Optimization,” in Proceedings of the IEEE Swarm Intell. Symp., pp. 120-
127, April 2007.

[27] Yong Feng, Gui-Fa Teng, Ai-Xin Wang, Yong-Mei Yao, “Chaotic Inertia
Weight in Particle Swarm Optimization,” in Second Internat. Conf.
Innovat. Comput., Inform. Control, pp. 475-478, September 2007.

[28] ZHang Tao, Cai Jin-ding, “A New Chaotic PSO with Dynamic Inertia
Weight for Economic Dispatch Problem,” in Internat. Conf. Sustain.
Power Gen. Supply, pp. 1-6, April 2009.

[29] J. C. Bansal, P. K. Singh Mukesh Saraswat, Abhishek Verma, Shimpi
Singh Jadon, Ajith Abraham, “Inertia Weight Strategies in Particle
Swarm Optimization,” in Third World Congress on Nature and Bio.
Inspired Comput., pp. 633-640, October 2011.

[30] Zhiguo Bao, Takahiro Watanabe, “A New Approach for Circuit Design
Optimization Using Genetic Algorithm,” in Internat. SoC Design Conf.,
vol. 1, pp. I383-I386, November 2008.

[31] Zhiguo Bao, Takahiro Watanabe, “A Novel Genetic Algorithm with Cell
Crossover for Circuit Design Optimization,” in IEEE Internat. Symp.
Circuits Syst., pp. 2982-2985, May 2009.

[32] Kinattingal Sundareswaren, V.T. Sreedevi, “Boost Converter Controller
Design Using Queen-Bee-Assisted GA,” in IEEE Trans. Indust. Elec-
tron., vol. 56, no. 3, pp. 778-783, March 2009.

[33] Ahmed F. Zobaa, Agostino Lecci, “Power Circuit Design Based on PSO
Optimization,” in Internat. Power Electron. and Motion Control Conf.,
pp. 121-125, September 2010.

[34] M. Kotti, B. Benhala, M. Fakhfakh, A. Ahaitouf, B. Benlahbib, M.
Loulou, A. Mecheqrane, “Comparison between PSO and ACO Tech-
niques for Analog Circuit Performance Optimization,” in Internat. Conf.
Microelect., pp. 1-6, December 2011.

[35] Xuejan Song, Yanli Cui, Aiting Li, “Optimization Algorithm of Evo-
lutionary Design of Circuits Based on Genetic Algorithm,” in Fifth
Internat. Symp. Comput. Intell. Design, vol. 1, pp. 336-339, October
2012.


