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Abstract – Sub-threshold conduction is an important consideration when dealing with modern 

devices, especially due to the trend towards increasingly smaller device sizes.  Shorter channels 

have adverse effects on sub-threshold swing, affecting device operation in this region.  Analog 

designers would like a smooth and accurate model in order to properly utilize this highly 

efficient operating region, while digital designers would prefer to understand methods to 

minimize channel conduction when a device is sub-threshold.  This paper will review previously 

published works that discuss analytical models for different sub-threshold concerns, including 

short-channel effects and the effects due to barrier-lowering.  Experimental data is also presented 

which verifies some of these selected models.  Finally, areas for further research into this 

operating region will be presented. 

 

I.  Introduction 

 The sub-threshold regime of MOSFETs is of particular interest to both analog and digital 

designers.  In this region of operation, colloquially known as weak-inversion, the ratio of 

transconductance to current is very high, making it a very efficient operating region [1].  

However, due to the nature of a parameter known as sub-threshold swing, the dependence on 

gate-source biasing causes distortion and nonlinear gain [1].  Ideally, this swing should be at a 

minimum of �����10� but is typically much larger due to many different effects occurring 

within the transistor. 

 The digital designer is concerned about the sub-threshold region for an entirely different 

reason.  In digital circuitry, a device can be in two states: “on”, or “off”.  In the “off” state, the 

applied VGS is less than VT which, incidentally, is the same condition for sub-threshold 

conduction.  Circuits that are critically dependent on this condition can exhibit non-ideal 
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behavior in that there will be at least some finite amount of current flow in what should be a 

zero-current state [2], [3]. 

 The following sections will deal with this sub-threshold regime and discuss the effects it 

has on device performance.  There are many different topics that can be considered in weak-

inversion including threshold voltage shifts, drain-induced barrier-lowering, non-uniform doping 

effects, and the effects due to multiple gates: all of which are covered under Section II.  

 Section III will cover selected experimental and theoretical comparison plots to help 

gauge a specific model’s accuracy over various parameters.  Section IV will discuss where these 

models perform well, where they falter, and how they could potentially be improved with further 

research.  Section V will present the conclusions formulated after the in-depth discussion of sub-

threshold behavior. 

 

II. Theory 

 Sub-threshold conduction is characterized by a current flow in the case when VGS < VT.  

An important parameter when discussing sub-threshold conduction is called sub-threshold swing 

and is given by equation (1). 

	 = 	 �
 log ��
��� �
��

 (1)  

As Vandamme et al. note in their paper, drain current for an NMOS transistor in weak-

inversion can be modeled by equation (2) where I0 is given in equation (3) [1]. 

�� = ��10��� �⁄  (2)  
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�� = ��10��� �⁄  (3)  

 Vandamme et al., however, sought to define a new equation for I0 based on drain leakage 

current.  For this, they made the following assumptions:  

i). Channels are both wide and long 

ii). The substrate is uniformly doped 

iii). VDS is small 

iv). There is no mobility degradation 

v). There are no edge effects 

Given these assumptions, equation (4) was derived where Ix’ is a technology-dependent 

parameter, η is a constant whose value is 0.9, and Smin is the sub-threshold swing when VGS is at 

the boundary between weak and moderate inversion. 

�� =  ! ��" × 10�$�� �%&'⁄  (4)  

 The issue with (4) is that the assumptions made to derive it ignore many crucial details, 

which will be outlined in the following sections. 

 

A) Shifting Threshold Voltage 

As channel-length is decreased, the threshold voltage changes as a function of the length 

itself and VDS [2].  In Taylor’s analysis, he derived the following equation: 

�( = �)* + 2�) + -./201� 23�2�) + �*�� 41 + ! − 23
��67 + ��� + �*�� − 23��67 + �*��! − 23��67 − 2�)� − 23��67 + ��� − 2�)�8 (5)  

This is obviously quite a complex equation with many parametric dependencies.  Note that here 

K is a constant equal to 
9:;<=>.  In order to simplify this sub-threshold analysis, let us first consider 
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the case where no bias is applied to the drain and where Vbi = 2ϕF.  This simplification yields 

equation (6) which is noticeably more compact than the previous threshold expression. 

�( = �)* + 2�) + -./!401�  (6)  

 In this new equation, where drain voltage is effectively ignored, there exists only a 

dependence on channel length, oxide thickness, and doping.  These equations, as Taylor points 

out, work well for device lengths larger than 1 µm (refer to Figure 6 in Section III) but he does 

not extrapolate his data for anything smaller.   

  Fjeldly and Shur present equation (7) below for a threshold shift based on a concept 

known as charge-sharing where κ is a constant that accounts for this charge-sharing, and xs and 

xd are the depletion widths associated with the source and drain (respectively) [3].   

∆�( = −2A �BC + BD�2EC-./�)01�  (7)  

Essentially, the theory is that in short-channel devices the depletion region of the gate overlaps 

the depletion regions associated with both the drain and the source.  This idea is illustrated in 

Figure 1 which was adapted from [3]. 

 
Figure 1. MOSFET cross-section with shared depletion zones illustrated.  Adapted from [3]. 
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Figure 2. MOSFET cross-section with drain bias applied.  Adapted from [3]. 

Fjeldly and Shur, however, note that this concept of charge sharing, which is assumed to 

be symmetric, begins to falter when a bias is applied to the drain.  As VDS is increased, the 

depletion region associated with the drain becomes larger and, as can be seen in Figure 2, the 

depletion charge is no longer symmetric.  The threshold voltage will now be dependent on the 

applied bias VDS [3].  It is here where the effects of drain-induced barrier-lowering (DIBL) begin 

to take hold.  

In order to account for DIBL within the threshold voltage model, Fjeldly and Shur 

present the following equation: 

∆�( = −2FGHDIJ�K sinh PBCK Q ∙ ���cosh P! − BCK Q − cosh PBCK Q (8)  

Here, χ is a fitting parameter, d
0

dep is the depletion depth at VDS of zero, and η is an ideality factor 

(the expression for λ can be found in the Appendix).  As can be seen (8), the change in threshold 

voltage decreases exponentially as L is increased (this can be verified in Figure 7 in Section III).  

Likewise, the threshold shift changes linearly with an applied VDS.  There is an important 

limitation to this equation, however: if the drain voltage applied becomes high enough such that 
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the drain and source depletion regions overlap, the device will suffer from punch-through and (8) 

will diverge [3]. 

 

B) Drain-Induced Barrier Lowering (DIBL) 

 Taylor was able to achieve a sub-threshold current equation with DIBL effects taken into 

account, as shown below in (9). 

��� = - B̅DU�7VBW PX� − �)�� Q
! − Y 2E-.Z/ ���� + �67 − X�� − Y 2E-.Z/ ��67 − X�� + 2YE��-.Z/

 
(9)  

In order to achieve this model, a method was used in which the depletion regions were 

approximated to geometric shapes.  Most notably, the depletion region under the gate is 

approximated to that of a trapezoid [2].  The regions that Taylor used can be seen in Figure 3.  

Taylor notes that as the depletion region under the drain (Region III in Figure 3) moves towards 

the source, the current becomes more dependent on drain voltage.  

  

 

Figure 3. Geometric approximation for depletion regions.  Adapted from [2]. 
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There is, however, an issue with this approximation when dealing with DIBL: the 

depletion region potential near the edges is inaccurately estimated which, in turn, does not give 

an accurate estimate for the potential barrier near the source [4].  Since DIBL, by definition, is 

dependent on the potential barrier height, it follows to reason that any inaccurate estimate of this 

barrier would produce inaccurate estimates for current as well.  Hence while (9) may be a good 

approximation, it does not accurately model the physical interactions in the channel due to the 

assumption that the potential at the surface is constant (which is only true for long-channel 

devices [5]). 

To overcome this problem, Poole and Kwong treated the surface potential properly by 

noting that it will change as a function of the position in the channel [5].  The reason the sub-

threshold current needs to be modeled this way is because in short-channel devices (where DIBL 

is of concern), the depletion regions occupy more area in the channel when compared to long-

channel devices.  The equation they present is shown below in (10).  Since ψs is a function of the 

position in the channel (here, designated with x), the predicted current will be greater than that 

predicted in (9). 

�� = - [7U�J� \1 − VBW P
−���� Q]

^ VBW P−X��� Q HB_�
 (10) 

 

C) Doping Effects 

Both equations (9) and (10) reveal dependencies on doping and this, along with the fact 

that non-uniform doping profiles can modify the depletion width, has a direct effect on sub-

threshold current [6].  Figure 4 depicts a plot of a MOSFET doping profile versus the distance 

from the interface.   
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Figure 4. Doping profile versus distance from the interface.  Adapted from [6]. 

 

This non-uniformity causes the number of implanted ions per area to become a function 

of the depletion width (as indicated by the shaded area in Figure 4) and results in a sub-threshold 

swing expression that depends on this relationship, as indicated by (11).  Further parameter 

definitions can be found in the Appendix. 

	 = �� ln�10� 1 + 0�01�
1 − P 2̀9Q P 0�01�Q

9 �1 + a��� (11) 

 Brews notes that (11) is not applicable when implanted ions reside mainly in either the 

inversion layer or the interface, but that the occurrence of this is very rare due to the narrow 

nature of the inversion later [6].  The important result of (11) is that the sub-threshold swing 

primarily depends on the depletion capacitance to oxide capacitance ratio, or 
bcbde.  Brews also 

notes that even though this analysis was carried out for long-channel devices, experiments 

suggest that the sub-threshold swing is not greatly influenced by short-channel effects as long as 

the device is sufficiently far away from punch-through [6].  
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D) Dual-Gate and FinFETs 

Due to the proliferation of dual-gate MOSFETs, discussing their effects on sub-threshold 

conduction is important for a comprehensive analysis of this regime.  Barsan attacked this 

problem by first realizing that a potential well or potential barrier can be created due to the 

addition of a second gate [7].  What happens is that either the current is controlled by the barrier, 

or the potential well acts as a drain.  The ensuing result is that sub-threshold current is controlled 

by the highest potential barrier [7].  Figure 5 shows this barrier and well creation where (a) 

coincides with control by the first gate and (b) coincides with control by the second gate.   

 

Figure 5. Dual-gate MOSFET cross-section with surface potential variation across channel. 

(a) ψs1 < ψs2.  (b) ψs1 > ψs2.  Adapted from [7]. 

 

 For long-channel MOSFETs, Barsan presents (12) and (13) which predict the sub-

threshold current taking into account both the channel lengths and surface potentials associated 

with the dual gate structure. 
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��( =  !� ��
VBW P− ����Q − VBW P−����Q

fX���� − 1 ∙ VBW P−X���� Q + !9!�fX�9�� − 1 ∙ VBW P−X�9�� Q
 (12) 

�� = g��Y12EChi�7 ∙ VBW �−32�)��� 
(13) 

In (12), the familiar exponential dependence on VDS exists in the dual-gate structure as 

does the dependence on channel width.  The two quite obvious additions to the sub-threshold 

model are the dual values for both channel length and surface potential, as is expected.  An 

interesting property of these equations is that since the surface potential is determined, in part, by 

the potential applied to the gate, for ψs1 << ψs2, the sub-threshold current only depends on VG1.  

Conversely, when ψs1 >> ψs2, the sub-threshold current only depends on VG2 [7].  It follows, then, 

that if the two surface potentials are similar in magnitude that the current would then depend on 

both bias voltages.    

 As was the case with short-channel effects for a normal MOSFET, there are barrier-

lowering effects in the dual-gate MOSFETs as well.  However, instead of a drain-induced 

lowering, the barrier-lowering is actually induced by the gates [7].  As Barsan describes, both the 

potential under the first gate and the drain junction itself are capable of lowering the potential 

barrier under the second gate.  Likewise, the barrier under the second gate is affected by both the 

first gate’s potential and by the drain as well.  However, calculating these effects is tricky due to 

their two-dimensional nature [7].  Thus, Barsan utilizes experimental parameters to help 

construct a model for short-channel dual-gate sub-threshold current shown below in (14) where 

I0 is given in (13). 
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��( =  !� ��
1 − VBW P−����� Q

f��* + X���� − 1 ∙ VBW P−X���� Q + !9!�f��* +X�9�� − 1 ∙ VBW P−X�9�� Q
 (14) 

 The short-channel (14) and long-channel (12) equations seem almost identical except for 

the inverse square-root dependence on the source-to-bulk potential VSB; however, this is slightly 

misleading.  Recall that in the short-channel case for dual-gate MOSFETs that the surface 

potential under either gate is dependent not only on its associated gate potential, but also the 

second gate potential and the drain potential due to gate-induced barrier-lowering [7].  This is 

shown below in (15) and (16) where αg1,2 are parameters dependent on L1,2, VSB, tox, and substrate 

doping.  The expressions for s1,2 and ψ1,2 can be found in the Appendix.   

X�� = ����k� + ��9�k9lm9 + ���lm9lD − \X� + X9lm9] (15) 

X�9 = ��9�k9 + ����k�lm� + ���lD − \X9 + X�lm�] 
(16) 

 These expressions, however, differ from other multi-gate structures such as the FinFET.  

In order to properly analyze the sub-threshold swing, a solution needs to be obtained for 

electrostatic potential in all three dimensions [8].  El Hamid et al. were able to derive an equation 

for the sub-threshold swing that utilizes the summation of the eigenvalues of the 3-D electrostatic 

potential solution, shown in (17) and (18).  The analytical limitation is that only undoped 

FinFETs were considered due to their higher mobility than that of doped devices [8]. 

	 = �����10�1 − ∑ o3� ∙ pqkrKs[tu ∙ pqk�Kvwt� + 39 ∙ pqkrKs[tu ∙ kx��Kvwt�yz{|,~  (17) 

K� = Y�Kvℎ1�
9 + \Ks�1]

9
 

(18) 
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 Of note, the values λz and λy are the lowest eigenvalues in the potential solution.  All other 

definitions can be found in the Appendix.  Because the model takes into account the shifting 

nature of the conduction path within the channel due to the three-dimensional effects of the 

applied gate bias, this model compares admirably versus experimental data for all device 

dimensions as well as either a small or large value for VDS [8].  Further experimental data is 

presented in Section III.  

 

III. Experimental Results 

 Recall Taylor’s analysis of the shifting threshold voltage in equation (5) with the 

approximation that the drain bias is zero in (6).  Experimentally, these two equations are 

compared in Figure 6 and, as expected, are in good agreement for small values of VDS.  As can be 

seen, there is a discrepancy for the VDS = 10 V case and that is caused by punch-through in the 

bulk. 

 

Figure 6. Threshold voltage with respect to channel length.  NA = 5.6 x 10 cm
-3

, VFB = 0.  Taken from [2]. 



 

Figure 7. Experimental values (symbols), fitted calculations (solid line) and approximation (dotted line) 

versus effective gate length.  Top curve at 85 K, Bottom curve at 300 K.  Taken from [3].

 

In a similar fashion, Fjeldly and Shur’s model, (8), 

experimental data, as seen in Figure 

µm, they claim, this model is valid [3].  

 Taylor’s model (9) for sub

drain voltage in Figure 8.  The solid line corresponds to experimental results while the thinner 

line is the theoretical model.  As can clearly be seen, the data fits very closely up until the point 

where VGS = VT (which is expected 

considerations in mind). 

Figure 8. IDS vs. 

 

Experimental values (symbols), fitted calculations (solid line) and approximation (dotted line) 

versus effective gate length.  Top curve at 85 K, Bottom curve at 300 K.  Taken from [3].

In a similar fashion, Fjeldly and Shur’s model, (8), performed very well against 

experimental data, as seen in Figure 7, above.  As long as the effective gate length is above 0.1 

this model is valid [3].   

Taylor’s model (9) for sub-threshold current is plotted against VGS for varying values of 

drain voltage in Figure 8.  The solid line corresponds to experimental results while the thinner 

line is the theoretical model.  As can clearly be seen, the data fits very closely up until the point 

(which is expected since the model was derived with only sub

 

vs. VGS for varying VDS values for (9).  Taken from [2]. 
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Experimental values (symbols), fitted calculations (solid line) and approximation (dotted line) for ∆VT 

versus effective gate length.  Top curve at 85 K, Bottom curve at 300 K.  Taken from [3]. 

ed very well against 

, above.  As long as the effective gate length is above 0.1 

for varying values of 

drain voltage in Figure 8.  The solid line corresponds to experimental results while the thinner 

line is the theoretical model.  As can clearly be seen, the data fits very closely up until the point 

since the model was derived with only sub-threshold 
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 The model (17) presented by El Hamid et al. shows very good correlation between itself 

and experimental data.  The model was used for a fin height of 60 nm and plotted for a small VDS 

value (in Figure 9a) and large VDS value (in Figure 9b).  Recall that El Hamid et al. claimed that 

despite the relocation of the conduction path for high values of VDS, the model still accurately 

predicts sub-threshold swing [8].  This is corroborated with Figure 9b where the error between 

the model and experimental results is negligible up to larger values for the fin width.  Despite the 

computational difficulty with (17) due to the 3-D electrostatic potential equation, this model is 

quite good at predicting the correct sub-threshold swing in modern devices.  

 
Figure 9.  (a) Sub-threshold Swing for small VDS. (b) Sub-threshold Swing for large VDS. Taken from [8]. 

 

IV. Discussion  

 As presented in Section II, each model has its faults due to various approximations.  

Taylor’s equations actually perform quite well and this is mainly attributable to the fact that both 

(5) and (9) take barrier-lowering effects into consideration.  However, in this analysis Taylor 

assumed a uniform doping profile even though small variations in doping can largely impact the 

end result [2].  Another short-coming of the model, as Taylor points out, is that it does not take 
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into consideration any surface states.  Any surface potential change due to trapped charges 

results in larger currents due to the exponential dependence on surface potential in (9). 

 In Section II, it was noted that Taylor only extrapolated his experimental and theoretical 

data out to 1 µm.  Due to the relatively high accuracy of his model, it would be interesting to see 

the correlation at smaller, more modern, lengths.  A likely result would be vast deviations in 

experimental and theoretical data due to the exacerbation of short-channel effects and 

increasingly more non-uniform doping profiles. 

 Fjeldly and Shur’s threshold model in (8) exhibits excellent correlation with experimental 

data in Figure 7, as previously mentioned.  The deviation at smaller effective gate lengths is due, 

in part, to the lack of consideration towards the contact junction depth.  This depth, when 

coupled with the typical short-channel effects, can drastically alter the change in threshold 

voltage. [3].  

 The results shown in Figure 9 from El Hamid et al. only deviate at larger fin widths.  

This, unsurprisingly, is due to an approximation made with regard to the location of the 

conduction path.  For (17), the conduction path parameter zc (which corresponds to the path 

location normal to the surface) was set at a fixed value for simplicity.  At larger VDS values, 

however, this location begins to move closer and closer to the surface when the width is 

increased, resulting in the slight discrepancy show in Figure 9b. 

 The underlying assumption in all of El Hamid et al.’s analysis is that, as indicated in the 

paper title, it only deals with undoped finFETs.  The explanation given in the paper is that 

undoped devices exhibit higher mobilities than that of doped devices; however no quantitative 

data was presented to verify the claim.  It would certainly be a worth-while effort to investigate 
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the sub-threshold dependencies on doping in finFETs as a point for comparison.  It is probable 

that the effects would be similar to that of a single-gate MOSFET, though the three-dimensional 

effects caused by non-uniformly doped substrates (as would likely be the case in modern 

devices) could have drastic adverse effects.  This is certainly an area worth exploring further. 

 

V. Conclusion 

 It is clear that there are a vast number of parameters that affect sub-threshold conduction.  

Since the condition for sub-threshold conduction is directly dependent on threshold voltage, it 

follows that lowering this value will decrease the range that the device will leak current.  From a 

design standpoint, this can be done quite easily by simply decreasing the oxide thickness since, 

in both (5) and (7), there exists an inverse dependence on Cox.  The only other true design 

parameter available that helps alleviate sub-threshold conduction issues is the length of the 

device and, as every model presented predicts, decreasing the length will decrease the sub-

threshold swing. 

 Short-channel effects are certainly the primary cause for concern in modern device sizes 

that are currently in the tens-of-nanometers range.  The effects from barrier-lowering, trapped 

charge, and doping profiles (among others) are problematic from a design standpoint, since they 

cause irregularities in sub-threshold models, and from an analytical standpoint, since they’re very 

complex to model.  For devices that exhibit different behaviors in different dimensions, this 

complexity increases substantially.  Understanding the underlying physics of whatever device a 

designer may be working with is paramount to minimizing adverse sub-threshold effects. 

  



17 

 

VI. References 

[1] E. P. Vandamme, Ph. Jansen, L. Deferm, “Modeling the Subthreshold Swing in 

MOSFET’s,” IEEE Electron Device Letters, vol. 18, no. 8, August 1997. 

[2] Geoffrey W. Taylor, “Subthreshold Conduction in MOSFET’s”, IEEE Transactions on 

Electron Devices, vol. ED-25, no. 3, March 1978. 

[3] Tor A. Fjeldly, Michael Shur, “Threshold Voltage Modeling and the Subthreshold 

Regime of Operation of Short-Channel MOSFET’s,” IEEE Transactions on Electron 

Devices, vol. 40, no.  1, January 1993. 

[4] Ronald A. Troutman, “VLSI Limitations from Drain-Induced Barrier Lowering,” IEEE 

Transactions on Electron Devices, vol. ED-26, no. 4, April 1979. 

[5] D. R. Poole, D. L. Kwong, “Analytical Modeling of the Subthreshold Current in Short-

Channel MOSFET’s”, IEEE Electron Device Letters, vol. EDL-7, no. 6, June 1986. 

[6] John R. Brews, “Subthreshold Behavior of Uniformly and Nonuniformly Doped Long-

Channel MOSFET”, IEEE Transactions on Electron Devices, vol. ED-26, no. 9, 

September 1979. 

[7] Radu M. Barsan, “Subthreshold Current of Dual-Gate MOSFET’s”, IEEE Transactions 

on Electron Devices, vol. ED-29, no. 10, October 1982. 

[8] Hamdy Abd El Hamid, Jaume Roig Guitart, Valeria Kilchytska, Denis Flandre, Benjamin 

Iñiguez, “A 3-D Analytical Physically Based Model for the Subthreshold Swing in 

Undoped Trigate FinFETs”, IEEE Transactions on Electron Devices, vol. 54, no. 9, 

September 2007. 

  



18 

 

 

VII. Appendix  

For equation (8): 

K = HDIJ�
Y1 + E7EC HDIJ

�
H7

 
(A.1) 

 

For equation (11): 

` = √2 ∙ ECt�1�E1�!*  (A.2) 

a = √2̀ 0�01� ��� − !* �H���HB ����� 
(A.3) 

�H���HB ���� = − 1!*9 ∙ �
./�B�� − W��B��.*

�
�

HB� (A.4) 

 

For equations (15) and (16): 

k�,9 = 1 + Y ���,92���* + X������ (A.5) 

X�,9 = 2��* +X�����
1 + Y2���* +X���������,9

+ �)*�,9k�,9  
(A.6) 
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For equation (17): 

3� = 	�∆��
U�|���%&'�����[ = [t� (A.7) 

39 = 	�∆��
U�|���%&'�����[ = [t� (A.8) 

	� = 4Kv9 ∙ �kx��Kv� − Kvpqk�Kv�� ∙ pqk �Kv2 � ∙ l�|s�s� (A.9) 

	� = � 4Kv ∙ �kx��Kv������[ = [t� − l��[ = [t� ∙ \kx��Kv� �12 − 1Kv9� + pqk
�Kv�Kv ]� − ���

∙ pqk \Ks2 ] 

(A.10)

∆�� = −kx��2Kv� − 2Kv2Kv  
(A.11)

∆�� = kx��2Kv� + 2Kv2Kv  
(A.12)

U� = kx�ℎ�K� ∙ B� − kx�ℎ�K� ∙ �B − !��kx�ℎ�K� ∙ !�  
(A.13)

�����[� = �( ∙ �� ���92� kVp9��� ∙ [�� (A.14)

� = EC7 ∙ ��94-�7�( (A.15)

 


